WS 2023/24 Marc Kegel

Contact Geometry

Exercise sheet 2

Exercise 1.

On $S^3 \subset \mathbb{R}^4$ consider the 1-form

$$\alpha = x_1 \, dy_1 - y_1 \, dx_1 + \sqrt{2}(x_2 \, dy_2 - y_2 \, dx_2). \tag{1}$$

- (a) Show that α is a contact form.
- (b) Compute the Reeb flow of α . How many closed orbits has it?
- (c) Show that $(S^3, \ker \alpha)$ is contactomorphic to (S^3, ξ_{st}) . *Hint:* Use Gray stability.
- (d) A strict contactomorphism preserves the Reeb flow.
- (e) Deduce that (S^3, α) and (S^3, α_{st}) are not strictly contactomorphic, that a contactomorphism does in general not preserve the Reeb flow, and that Gray stability does not hold true for contact forms.

Exercise 2.

Two contact structures ξ_0 and ξ_1 on a manifold M are called **isotopic** if there exist a family of diffeomorphisms $\psi_t \colon M \to M$ such that $\psi_0 = \text{Id}$ and ψ_1 is a contactomorphism from (M, ξ_0) to (M, ξ_1) .

(a) Consider on \mathbb{R}^{2n+1} the contact forms

$$\alpha_0 = dz + \sum_{j=1}^n x_j \, dy_j$$
 and $\alpha_0 = 2dz + \sum_{j=1}^n x_j \, dy_j - y_j \, dx_j$.

Show that the induced contact structures are isotopic.

(b) Can the isotopy be chosen such that ψ_1 is a strict contactomorphism?

Exercise 3.

Prove Theorem 2.4 from the lecture.

Hint: Use the stereographic projection.

Exercise 4.

- (a) Describe a contact structure on $\mathbb{R}P^3$.

 Hint: Write $\mathbb{R}P^3$ as the unit cotangent bundle of a surface and use the canonical contact structure.
- (b) Let M and N be diffeomorphic manifolds. Show that their unit cotangent bundles (with their canonical contact structures) are contactomorphic.

Exercise 5.

Let p and q be coprime integers and consider S^3 as the unit sphere in \mathbb{C}^2 . Consider the \mathbb{Z}_p action on S^3 generated by the diffeomorphism

$$(z, w) \longmapsto (e^{2\pi i/p}z, e^{2\pi iq/p}w).$$

- (a) Show that this group action is free and thus the quotient is a smooth 3-manifold. We call that manifold the **lens space** L(p,q).
- (b) Show that L(p,q) admits a contact structure.
- (c) Let (M, ξ) be a contact manifold and let M' be a cover of M. Then M' admits a contact structure.

Bonus exercise.

Prove Lemma 2.10 from the lecture.